Page last updated: 2024-12-10

1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea is a **chemical compound** that belongs to the family of **thioureas**. It's a complex molecule with a specific structure, and its importance stems from its potential applications in research:

**Structure:**

* **Thiourea core:** This is the central structural feature, containing a carbon atom double-bonded to a sulfur atom and single-bonded to two nitrogen atoms.
* **Substitutions:** The compound has specific substituents attached to the thiourea core:
* **6-methyl-2-pyridinyl group:** This is a pyridine ring (a six-membered aromatic ring containing a nitrogen atom) with a methyl group attached at the 6-position and attached to the thiourea at the 2-position.
* **3-(trifluoromethyl)phenyl group:** This is a phenyl ring (a six-membered aromatic ring) with a trifluoromethyl group (CF3) attached at the 3-position, and it's also linked to the thiourea.

**Potential Research Significance:**

Thioureas are known for their diverse biological activities, and this specific compound could be interesting for research due to:

* **Medicinal Chemistry:**
* **Antimicrobial properties:** Thioureas are often investigated for their potential to inhibit the growth of bacteria, fungi, and viruses.
* **Anti-inflammatory activity:** Some thioureas have shown promising results in reducing inflammation.
* **Other pharmacological effects:** Research is ongoing to explore other potential uses, such as anti-cancer activity or effects on the nervous system.
* **Material Science:**
* **Organic electronics:** Thioureas can be used as building blocks for organic semiconductors or other materials with electronic properties.
* **Dye synthesis:** They can be used as starting materials for the synthesis of dyes.
* **Analytical Chemistry:**
* **Chemosensors:** Some thioureas act as selective sensors for detecting specific ions or molecules.

**Importance for Research:**

1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea is important for research because it represents a novel compound with a specific structure and potentially interesting biological properties. Scientists are investigating its activity and how it compares to other thioureas.

**Note:**
It's crucial to remember that research on this specific compound is likely in its early stages. More studies are needed to fully understand its properties and potential applications.

Cross-References

ID SourceID
PubMed CID3342380
CHEMBL ID1468917
CHEBI ID121702

Synonyms (11)

Synonym
smr000206239
n-(6-methylpyridin-2-yl)-n'-[3-(trifluoromethyl)phenyl]thiourea
MLS000583053 ,
CHEBI:121702
AKOS001093977
1-(6-methylpyridin-2-yl)-3-[3-(trifluoromethyl)phenyl]thiourea
HMS2537J14
CHEMBL1468917
Q27210267
1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea
3-(6-methylpyridin-2-yl)-1-[3-(trifluoromethyl)phenyl]thiourea
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
thioureasCompounds of general formula RR'NC(=S)NR''R'''.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (10)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
thioredoxin reductaseRattus norvegicus (Norway rat)Potency3.54810.100020.879379.4328AID588453
ATAD5 protein, partialHomo sapiens (human)Potency20.59620.004110.890331.5287AID504467
TDP1 proteinHomo sapiens (human)Potency26.10110.000811.382244.6684AID686978; AID686979
glucocerebrosidaseHomo sapiens (human)Potency10.00000.01268.156944.6684AID2101
chromobox protein homolog 1Homo sapiens (human)Potency112.20200.006026.168889.1251AID540317
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency1.12950.00798.23321,122.0200AID2546; AID2551
VprHuman immunodeficiency virus 1Potency1.00001.584919.626463.0957AID651644
DNA dC->dU-editing enzyme APOBEC-3F isoform aHomo sapiens (human)Potency2.81840.025911.239831.6228AID602313
lamin isoform A-delta10Homo sapiens (human)Potency5.01190.891312.067628.1838AID1487
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency79.43286.309660.2008112.2020AID720709
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (20)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (4)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (8)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]