1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea is a **chemical compound** that belongs to the family of **thioureas**. It's a complex molecule with a specific structure, and its importance stems from its potential applications in research:
**Structure:**
* **Thiourea core:** This is the central structural feature, containing a carbon atom double-bonded to a sulfur atom and single-bonded to two nitrogen atoms.
* **Substitutions:** The compound has specific substituents attached to the thiourea core:
* **6-methyl-2-pyridinyl group:** This is a pyridine ring (a six-membered aromatic ring containing a nitrogen atom) with a methyl group attached at the 6-position and attached to the thiourea at the 2-position.
* **3-(trifluoromethyl)phenyl group:** This is a phenyl ring (a six-membered aromatic ring) with a trifluoromethyl group (CF3) attached at the 3-position, and it's also linked to the thiourea.
**Potential Research Significance:**
Thioureas are known for their diverse biological activities, and this specific compound could be interesting for research due to:
* **Medicinal Chemistry:**
* **Antimicrobial properties:** Thioureas are often investigated for their potential to inhibit the growth of bacteria, fungi, and viruses.
* **Anti-inflammatory activity:** Some thioureas have shown promising results in reducing inflammation.
* **Other pharmacological effects:** Research is ongoing to explore other potential uses, such as anti-cancer activity or effects on the nervous system.
* **Material Science:**
* **Organic electronics:** Thioureas can be used as building blocks for organic semiconductors or other materials with electronic properties.
* **Dye synthesis:** They can be used as starting materials for the synthesis of dyes.
* **Analytical Chemistry:**
* **Chemosensors:** Some thioureas act as selective sensors for detecting specific ions or molecules.
**Importance for Research:**
1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea is important for research because it represents a novel compound with a specific structure and potentially interesting biological properties. Scientists are investigating its activity and how it compares to other thioureas.
**Note:**
It's crucial to remember that research on this specific compound is likely in its early stages. More studies are needed to fully understand its properties and potential applications.
ID Source | ID |
---|---|
PubMed CID | 3342380 |
CHEMBL ID | 1468917 |
CHEBI ID | 121702 |
Synonym |
---|
smr000206239 |
n-(6-methylpyridin-2-yl)-n'-[3-(trifluoromethyl)phenyl]thiourea |
MLS000583053 , |
CHEBI:121702 |
AKOS001093977 |
1-(6-methylpyridin-2-yl)-3-[3-(trifluoromethyl)phenyl]thiourea |
HMS2537J14 |
CHEMBL1468917 |
Q27210267 |
1-(6-methyl-2-pyridinyl)-3-[3-(trifluoromethyl)phenyl]thiourea |
3-(6-methylpyridin-2-yl)-1-[3-(trifluoromethyl)phenyl]thiourea |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 3.5481 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 20.5962 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 26.1011 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
glucocerebrosidase | Homo sapiens (human) | Potency | 10.0000 | 0.0126 | 8.1569 | 44.6684 | AID2101 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 112.2020 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 1.1295 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
Vpr | Human immunodeficiency virus 1 | Potency | 1.0000 | 1.5849 | 19.6264 | 63.0957 | AID651644 |
DNA dC->dU-editing enzyme APOBEC-3F isoform a | Homo sapiens (human) | Potency | 2.8184 | 0.0259 | 11.2398 | 31.6228 | AID602313 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 5.0119 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) | Potency | 79.4328 | 6.3096 | 60.2008 | 112.2020 | AID720709 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
protein domain specific binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
cortical actin cytoskeleton | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
microvillus | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
endomembrane system | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
lamellipodium | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
filopodium | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
extracellular exosome | Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |